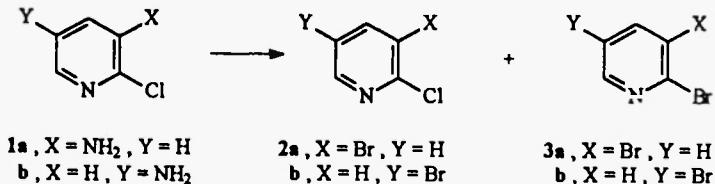


Graphical Abstracts

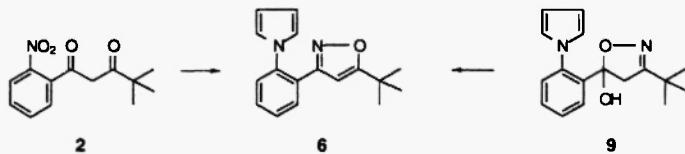

Heterocycl. Commun. 4 (1998) 291-292

Unexpected Displacements of Chloride by Bromide Found During Sandmeyer Reactions of 3- or 5-Amino-2-Chloropyridines

A.Paul Krapcho* and Simon N. Haydar

Department of Chemistry, The University of Vermont, Burlington, VT 05405 USA

Facile, temperature dependent displacements of chloride by bromide have been found in the diazotizations of **1a** and **1b**, followed by addition of CuBr in 48% HBr


Heterocycl. Commun. 4 (1998) 293-299

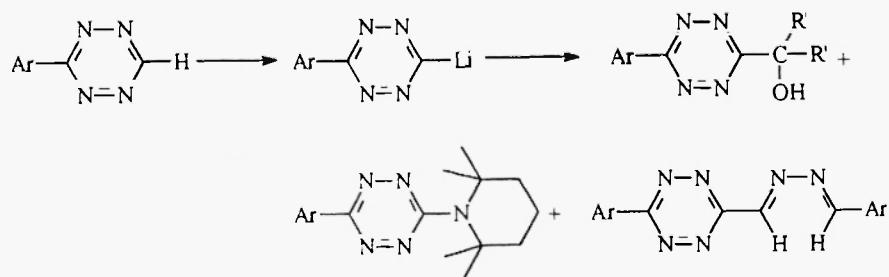
AN UNEXPECTED TRANSFORMATION DURING THE SYNTHESIS OF 3,5-DISUBSTITUTED ISOXAZOLES

Gary M. Coppola, Michael J. Shapiro, Kay Mane Sam and Jefferson Chin

Department of Metabolic Diseases, Novartis Pharmaceuticals, 556 Morris Ave., Summit, N.J. 07901

Treatment of diketone **2** with hydroxylamine followed by conversion of the nitro group to a pyrrole furnished the 5-alkyl-3-arylisoxazole **6** instead of the expected 3-alkyl-5-arylisoxazole **5**. Likewise, treatment of **9** with acid produced isoxazole **6** as the sole product.

Heterocycl. Commun. 4 (1998) 301-308

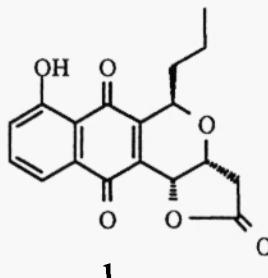

LITHIATION OF 3-ARYL-1,2,4,5-TETRAZINES

Pilar Prieto Núñez-Polo and Hans Neunhoeffer

Institut für Organische Chemie der Technischen Universität Darmstadt,

Petersenstrasse 22, D-64287 Darmstadt, Germany

Lithiation of 3-aryl-1,2,4,5-tetrazines with lithium 2,2,6,6-tetramethylpiperidide and reaction of the lithio-1,2,4,5-tetrazines with aldehydes or ketones affords 3-aryl-6-(α -hydroxymethyl)-1,2,4,5-tetrazines, 3-aryl-6-(tetramethylpiperidyl-1)-1,2,4,5-tetrazines and 1-aryl-4-(6-aryl-1,2,4,5-tetrazin-3-yl)-2,3-diazabutadienes.



ANTICOCCIDIAL ACTIVITY OF NOVEL SEMI-SYNTHETIC ANALOGUES OF FRENOLICIN B (I)

Richard E. Armer*, Christopher J. Dutton, Brian R. Fenner, Sean D.W. Greenwood, Kim T. Hall and Andrew J. Rudge.

Animal Health Discovery, Pfizer Central Research, Ramsgate Road, Sandwich, Kent, CT13 9NJ, U.K.

Abstract: Semi-synthetic aromatically substituted analogues of the naphthopyranquinone, frenolicin B 1, have been produced and their biological activity as anticoccidial agents investigated *in vivo*.

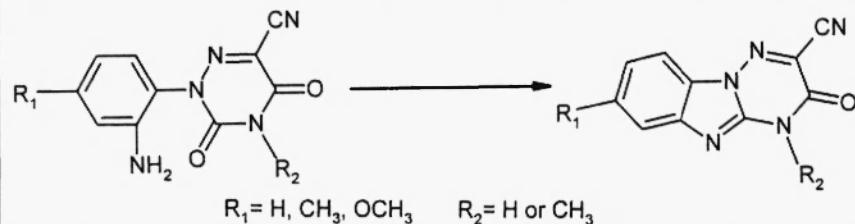
PREPARATION AND REACTIVITY OF 1-BENZYL-2,4-PIPERIDINEDIONE-3-CARBOXYLIC ACID DERIVATIVES

Samir Ibenmoussa,^a Olivier Chavignon,^b Jean-Claude Teulade,^b Henry Viols,^a Jean-Claude Debouzy,^c Jean-Pierre Chapat,^c and Alain Gueiffier,^d

^a E.A Pharmacochimie et Biomolécules, Laboratoire de Chimie Organique Pharmaceutique, Faculté de Pharmacie, 15 Avenue Charles Flahault, 34060 Montpellier, France.

^b Laboratoire de Chimie Organique Pharmaceutique, Groupe de Recherches en Pharmacochimie, UFR de Pharmacie, 28, Place H. Dunant, B.P. 38, 63001 Clermont-Ferrand, France.

^c Centre de Recherches du Service de Santé des Armées, Unité de biophysique, 24 avenue des maquis du Gresivaudan, B.P. 87, 38702 La Tronche Cedex, France.

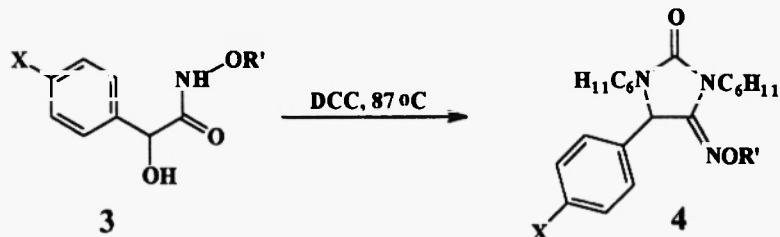

^d Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 31 avenue Monge, 37200 Tours, France.

The synthesis of title compound was reported using a Dieckmann reaction. His reactivity was further studied, particularly alkylation reactions. The ¹H and ¹³C-NMR of obtained compounds were also reported.

Synthesis of some 3-oxo-3,4-dihydro-1,2,4-triazino[2,3-a]benzimidazole-2-carbonitriles

Petr Bilek, Jan Slouka

Department of Organic Chemistry, Tr. Svobody 8, 77146 Olomouc, Czech Republic

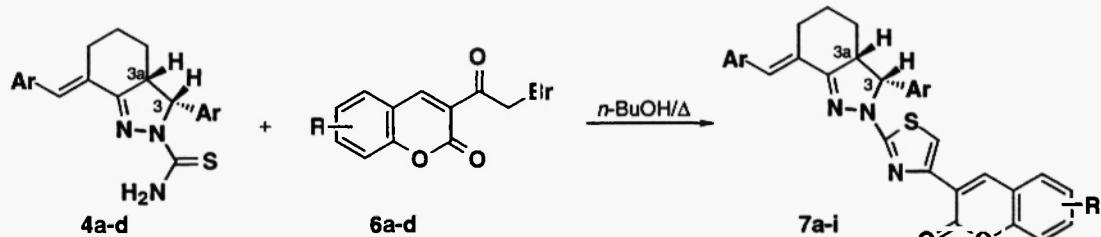


4-ALKOXYIMINOHYDANTOINS FROM O-ALKYLHYDROXAMIC ACIDS AND DICYCLOHEXYLCARBODIIMIDE

Detlef Geffken * and Ralf Gleixner

Institute of Pharmacy, Pharmaceutical Chemistry Department, University of Hamburg;
Bundesstrasse 45, 20146 Hamburg, Germany

4-Alkoxyiminohydantoins 4 are obtained from the cyclocondensation of O-alkylmandelohydroxamic acids 3 with dicyclohexylcarbodiimide.

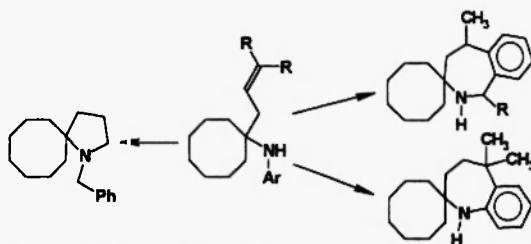


A FACILE STEREOSELECTIVE SYNTHESIS OF NOVEL HETEROCYCLES WITH HEXAHYDRO-2H-INDAZOLE, THIAZOLE, AND COUMARIN MOIETIES

Yaroslav V. Bilokon (Belokon), *^{a1} and Ivan M. Gella ^b

^a Department of Organic Chemistry, Ukrainian Academy of Pharmacy, 310002 Kharkov, Ukraine

^b Department of Organic Chemistry, Kharkov State University, 4 Svobody sq., 310077 Kharkov, Ukraine

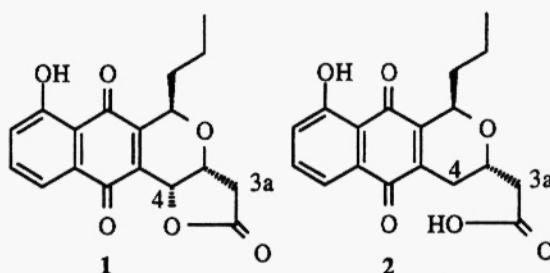

3,3a-Cis-hexahydro-2H-indazole derivatives 7a-i substituted at 2-position with heterocyclic fragments such as thiazole and coumarin have been synthesized by condensation of 3-(ω-bromoacetyl)coumarins 6a-d and N-thiocarbamoyl-hexahydroindazoles 4a-d.

SYNTHESIS OF NEW SPIROHETEROCYCLES WITH CYCLOOCTANE FRAGMENT

Leonor Y. Vargas M. and Vladimir Kouznetsov*

Laboratory of Fine Organic Chemistry, School of Chemistry, Industrial University of Santander, Bucaramanga, Colombia, A. A. 678. Fax : 5776- 350540 ; E-mail: kouznet@uis.edu.co

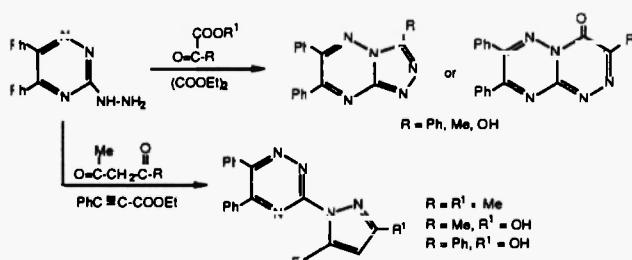
New spirocyclooctanes with pyrrolidine and 1-benz- or 2-benzazepine moieties were prepared from the same starting materials: homoallylamines derived from N-cyclooctylidene-aryl(benzyl)amines and allyl- or prenyl magnesium bromide.



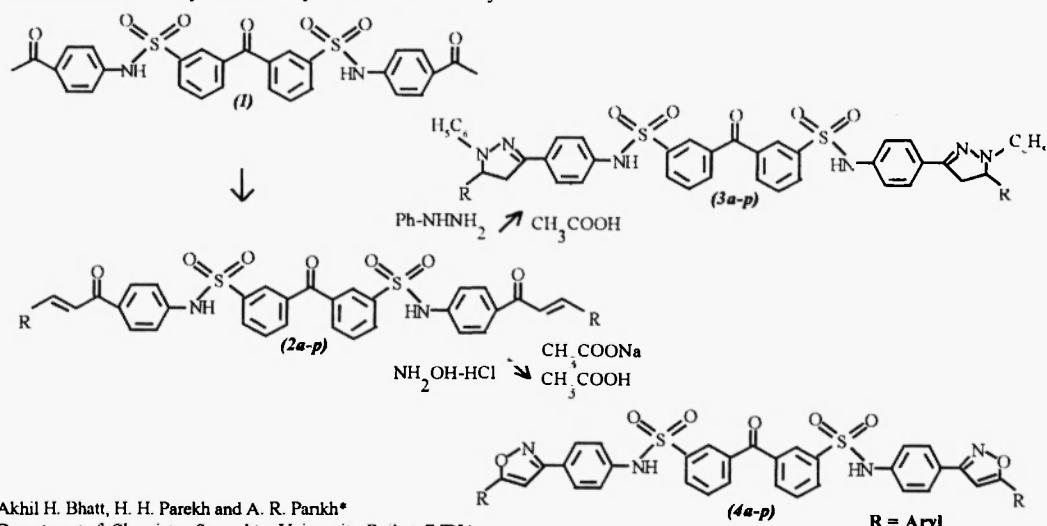
**ANTICOCCIDIAL ACTIVITY OF NOVEL SEMI-SYNTHETIC
ANALOGUES OF DEOXYFRENOLICIN AND FRENOLICIN B (PART II)**

Richard E. Armer, Christopher J. Dutton*, Brian R. Fenner, Sean D.W. Greenwood, Kim T. Hall
and Andrew J. Rudge.

Animal Health Discovery, Pfizer Central Research, Ramsgate Road, Sandwich, Kent, CT13 9NJ,
U.K.


Abstract: Semi-synthetic C-3a and C-4 substituted analogues of the naphthopyranquinones, frenolicin B **1**, and deoxyfrenolicin **2**, have been produced and their biological activity as anticoccidial agents investigated *in vivo*.

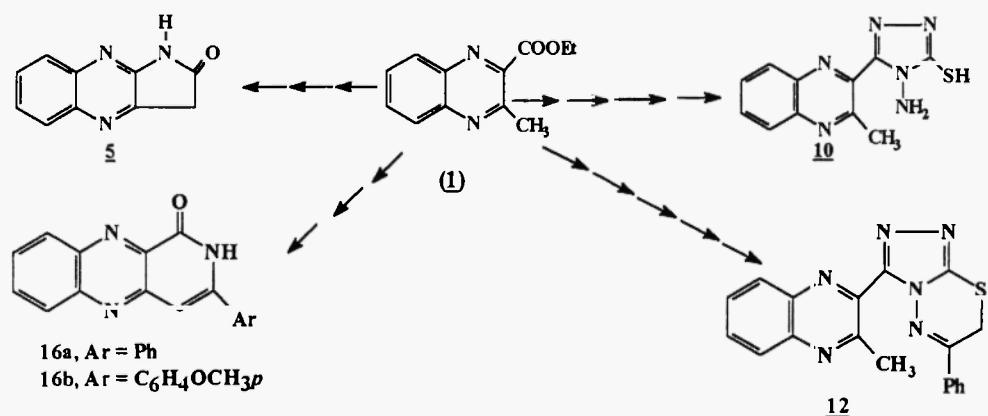
**SYNTHESIS AND ANTIMICROBIAL ACTIVITIES OF CONDENSED AND UNCONDENSED
1,2,4-TRIAZINES**


M. A. E. Shaban*, M. A. M. Taha[†] and H. M. A. Hamouda

Departments of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, and Faculty of Science[†], Cairo University, Faiyoun, Egypt.

**SYNTHESIS OF PYRAZOLINES AND ISOXAZOLES
AS POTENTIAL ANTIMICROBIAL AGENTS**

Reaction of chalcones with phenyl hydrazine and hydroxylamine hydrochloride leads to the formation of phenyl pyrazolines (*3a-p*) and isoxazoles (*4a-p*) respectively. The compounds were evaluated *in vitro* for antimicrobial activity and antimycobacterial activity.



Akhil H. Bhatt, H. H. Parekh and A. R. Pankh*
Department of Chemistry, Saurashtra University, Rajkot, INDIA

SYNTHESIS OF SOME NEW OXADIAZOLYL, TRIAZOLYL AND PYRIDOQUINOXALINE DERIVATIVES

A.M. Kamal El-Dean* and A.A. Geies
Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

Ethyl 3-methylquinoxaline-2-carboxylate (**1**) was synthesized and used as a starting material for producing pyrrolquinoxaline **5**, oxadiazolylquinoxaline **8** and pyridoquinoxalines **16**.

